
Research Article Vol. 13, No. 2 / 1 Feb 2022 / Biomedical Optics Express 921

Robustness of diffuse reflectance spectra
analysis by inverse adding doubling algorithm
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Abstract: Analysing diffuse reflectance spectra to extract properties of biological tissue requires
modelling of light transport within the tissue, considering its absorption, scattering, and
geometrical properties. Due to the layered skin structure, skin tissue models are often divided
into multiple layers with their associated optical properties. Typically, in the analysis, some
model parameters defining these properties are fixed to values reported in the literature to speed
up the fitting process and improve its performance. In the absence of consensus, various studies
use different approaches in fixing the model parameters. This study aims to assess the effect of
fixing various model parameters in the skin spectra fitting process on the accuracy and robustness
of a GPU-accelerated two-layer inverse adding-doubling (IAD) algorithm. Specifically, the
performance of the IAD method is determined for noiseless simulated skin spectra, simulated
spectra with different levels of noise applied, and in-vivo measured reflectance spectra from
hyperspectral images of human hands recorded before, during, and after the arterial occlusion.
Our results suggest that fixing multiple parameters to a priori known values generally improves
the robustness and accuracy of the IAD algorithm for simulated spectra. However, for in-vivo
measured spectra, these values are unknown in advance and fixing optical parameters to incorrect
values significantly deteriorates the overall performance. Therefore, we propose a method to
improve the fitting performance by pre-estimating model parameters. Our findings could be
considered in all future research involving the analysis of diffuse reflectance spectra to extract
optical properties of skin tissue.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Diagnostic optical imaging techniques detect light propagating from the imaged sample towards
the light detector. Reflected, transmitted or fluorescent light exiting the sample such as biological
tissue contains important information on the optical properties of tissue within the interrogated
volume. Among others, information about tissue absorption (e.g., blood and melanin content) and
scattering (e.g., distribution of scatterers such as collagen fibres) properties can be determined.
However, a relation between the sample properties and the light propagation in biological tissue
must be established to extract quantitative optical properties from the detected light.

Light propagation in biological tissue is generally modelled using different iterative approaches
such as diffusion approximation (DA), adding-doubling (AD) and Monte Carlo (MC) [1]. The
latter is widely used for its flexibility and high accuracy but is computationally intensive and
therefore time-consuming. DA is simple, fast and can be solved analytically but is highly
inaccurate and only applies to strongly scattering media. On the other hand, AD can achieve
an arbitrary level of accuracy much faster than MC and is adaptable enough to model various
optical properties such as scattering anisotropy and phase function. In contrast to MC and DA, it
can only model layered turbid media in a slab geometry [2]. Therefore, it is applicable only to
detection schemes where spatially resolved information is not obtained (e.g., diffuse reflectance
spectroscopy by integrating spheres, hyperspectral imaging using full-field illumination). In all
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these approaches, tissue optical properties are implicitly encoded in measured tissue properties
such as reflectance [1,3].

In skin tissue, the main absorbers are blood (haemoglobin) and melanin in the visible spectrum,
proteins and amino acids in the UV spectrum, and water and lipids in the IR spectrum [4]. The
most prominent scatterers include collagen fibres and cellular organelles such as mitochondria and
lysosomes [1]. Human skin is a layered tissue consisting of three layers: the epidermis, dermis,
and subcutis, each with unique characteristics. To accurately extract the optical properties of
skin, its layered structure must be considered in the tissue model, and the main absorbers must be
included. However, an open question remains on how accurately the skin should be modelled, i.e.
the number of layers that should be simulated and which (and how many) parameters representing
optical properties should be accounted for in each layer.

Traditionally, many authors employed a human skin model based on a single homogeneous
layer [5,6], two layers [3,7–13] (e.g., a thin upper layer and a semi-infinite bottom layer), or
three layers [14,15], better representing the skin structure. Verdel et al. [16] applied a four-layer
skin model, where the dermis was subdivided into two structurally different layers, the papillary
and reticular dermis. Furthermore, research groups by Meglinski divided human skin into six
[17], seven [18–21] or eight [22] layers, resulting in an advanced but exceptionally complex
model. Intrigued by the problem, Karlsson et al. [23] showed that a homogenous one-layer
optical skin model is incapable of explaining spatially resolved diffuse reflectance spectra at
multiple source-detector separations in the visible wavelengths range. Similarly, Hennessy et al.
[3] proved that using a one-layer model leads to significant errors in extracted optical properties.
Fredriksson et al. [14] demonstrated that a three-layer multi-parameter tissue model is needed to
explain spectra at two different source-detector separations for realistic simulated tissue models.
However, Bjorgan and Randeberg [24] proved that by exploiting the scale-invariance of the
reflectance modelling, it is possible to consider just the upper layer (epidermis) of the skin without
completely modelling the lower layers. Importantly, their Monte Carlo simulations indicate
that the fitted layer transmittance and reflectance spectra are unique, but an infinite number of
physiological skin optical parameters yield almost identical spectra.

Besides partitioning skin tissue models into multiple anatomically justified layers, modelling
skin involves considering various absorption and scattering properties. The latter are usually
assumed to be the same in all layers [3,9,14,24,25]. On the other hand, absorption properties
considered in different studies vary significantly. Generally, the model must include all essential
tissue absorbers (also called chromophores) or else the included absorbers will compensate for
the missing ones [14]. For example, Lindbergh et al. [6] showed that diffuse reflectance spectra
of a human myocardium surface are modelled better with the inclusion of absorbers such as
cytochrome aa3 and methemoglobin. Nevertheless, there is no general approach, and the authors
seem to adapt the models to their needs in specific cases.

The same is true for another critical question that remains open in the field: which (and
how many) tissue parameters integrated within the skin model could be assumed from the
literature. Commonly, the authors refer to thorough reviews of reported tissue optical properties
by Bashkatov et al. [1] or Jacques [4] to fix the values of selected parameters that the model does
not estimate. While doing so, which is necessary to speed up and increase the robustness of the
spectra fitting process, it may lead to inaccurate estimation of the fitted optical parameters.

To our knowledge, no previous study investigated the effect of fixing various tissue parameters
in the skin model on the accuracy of estimating the remaining free parameters and the robustness
of the fitting process. Therefore, one of the main goals of this study was to find the optimal
sets of fixed parameters, i.e. the ones that yield the most accurate and precise results with the
smallest number of fixed parameters, to speed up the analysis of diffuse reflectance spectra
with a GPU-accelerated two-layer inverse AD algorithm (IAD). In order to do this, 15 sets of
11 tissue parameters were selected, where each set of parameters represented a noiseless skin
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spectrum simulated using the two-layer AD method. Then, these 15 spectra were fitted using the
Levenberg-Marquardt (LM) algorithm for 27 different fitting cases, where various combinations
of optical parameters were fixed to find the optimal set of fixed parameters. The two-layer skin
geometry was used because multiple previous studies demonstrated that two layers are sufficient
to simulate skin spectra [3,7–13]. Moreover, Bjorgan and Randeberg [24] proved that reflectance
from one-layer dermis models identical to the reflectance of the multi-layer dermis models could
be constructed. Thus, skin reflectance spectra can be investigated without fully modelling the
deeper layers.

Another chief aim was to show that by assuming the optimal set of fixed parameters, the
performance of our IAD algorithm improves significantly. Specifically, the optical parameters
estimated by the model are less scattered around the mean values, resulting in much more stable
and robust fits and agree better with the actual values, yielding higher accuracy. This hypothesis
was tested by adding different noise levels to the simulated skin spectra and studying the effect of
noise on the algorithm’s performance.

Ultimately, we demonstrated that the two-layer IAD method is an accurate and robust technique
for analysing in-vivo measured diffuse reflectance spectra by determining optical parameters
from hyperspectral images of human hands.

2. Materials and methods

2.1. Skin spectra simulation

Skin spectra were simulated using the AD algorithm introduced to biomedical optics by Prahl et
al. [2]. Inverse AD (IAD) is an iterative technique for numerical solving the radiative transport
equation (RTE) in homogeneous turbid media of slab geometry. The method provides vast
flexibility in modelling turbid media with any optical properties, such as albedo, refractive
index, and optical thickness, considering anisotropic scattering within each medium and light
reflection and transmission at the interface of different media. Compared to MCML [26], which
is widely used for light transport modelling in multi-layered tissues in the biomedical optics
community, the IAD method can model the same geometries if laterally homogenous illumination
is considered and light is normally incident upon the sample – which is the case of hyperspectral
imaging presented in this study. Generally, IAD allows for any desired accuracy to be achieved,
given sufficient time and computing resources [1,2]. Specifically, Prahl et al. [2] verified IAD
against inverse MC (IMC) for multiple combinations of absorption and scattering coefficients
and anisotropy factors. They found that estimated parameters mainly were within 2-3% of those
obtained by IMC, as confirmed in a recent study by Vincely et al. [27].

The IAD algorithm was adopted in this study to the graphics processing unit (GPU) to accelerate
the calculation significantly. A two-layer skin model shown in Fig. 1 was considered comprising
epidermis and dermis and defined by 11 tissue parameters. The forward AD algorithm simulated
light propagation in the skin model and ultimately calculated the reflectance and transmittance
spectra. The developed GPU IAD algorithm was extensively tested against MCML for a broad
range of optical properties characteristic for biological tissues (absorption coefficient 0.1–1 cm−1,
scattering coefficient 25–150 cm−1, anisotropy factor 0.55–0.96, refraction index 1.3–1.5). For
20 fluxes, the agreement between IMC and IAD was absolute down to the fourth decimal place.
More information about the MCML and IAD can be found in [28].

LM algorithm was adopted to GPU to perform non-linear least-squares fitting of the AD
simulated reflectance spectra to the measured reflectance spectra. LM was used for non-linear
least-squares fitting as it converges faster than other optimisation methods such as the Gauss-
Newton method and can find an optimal solution even if the initially guessed parameters are far
from the solution [29].
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Fig. 1. A two-layer skin model with a total of 11 tissue parameters was used in this study.
The parameters are as follows: fm – melanin volume fraction, fHb – deoxyhaemoglobin
volume fraction, fHbO2 – oxyhaemoglobin volume fraction, fbrub – bilirubin millimolar
concentration, fCO – reduced cytochrome C oxidase millimolar concentration, fCOO2 –
oxidised cytochrome C oxidase millimolar concentration, as – scattering coefficient, bs
– scattering power, fRay – fraction of Rayleigh scattering, de – epidermis thickness, dd –
dermis thickness.

The absorption coefficient of the epidermis and dermis was calculated as [4]:

µa, epi = fmµa,m + µa, base, (1)

µa, der = fHbµa,Hb + fHbO2 µa,HbO2 + fbrubµa, brub + fCOµa,CO + fCOO2 µa,COO2 + µa, base, (2)

where µa, base is the baseline absorption of bloodless skin [16],

µa, base = 0.244 cm−1 + 85.3 cm−1 · e−
λ−154 nm
66.2 nm , (3)

λ is the wavelength of light, and µa, m is the absorption coefficient of melanin,

µa,m = 6.6 · 1011 cm−1(
λ

nm
)−3.33. (4)

Parameter fm represents the volume fraction of melanin, fHb and fHbO2 are volume fractions
of deoxy- and oxyhaemoglobin, µa, Hb and µa, HbO2 are associated absorption coefficients, fbrub
and µa, brub are millimolar concentration and absorption coefficient of bilirubin, whereas fCO and
fCOO2 are respective millimolar concentrations of reduced and oxidised cytochrome C oxidase
and µa, CO and µa, COO2 the corresponding absorption coefficients. fHb and fHbO2 are calculated
from the blood volume fraction, B, and blood oxygen saturation, S [4]:

fHb = B · (1 − S),
fHbO2 = B · S.

(5)

Furthermore, the reduced scattering coefficient was adapted from [4]:

µs′ = as[fRay(
λ

500 nm
)−4 + (1 − fRay)(

λ

500 nm
)−bs], (6)

where as is the scattering coefficient, fRay is the fraction of Rayleigh scattered light, and bs is
the scattering power. The angular distribution of scattered light intensity was specified by the
Henyey-Greenstein phase function, where the anisotropy factor was determined from [1]:

g = 0.62 + 29 nm−1 · 10−5λ. (7)

Finally, the refractive index of the epidermis and dermis was calculated as [1]:

n = 1.309 − 4.346 · 102λ−2 + 1.6065 · 109λ−4 − 1.2811 · 1014λ−6. (8)
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2.2. Fitting cases

A total of 15 skin spectra were simulated in this study from the predetermined sets of tissue
parameters presented in Table 1. The baseline spectrum (Spectrum 2) represents skin with a 2
% melanin volume fraction, 0.65 % blood volume fraction (B) and 40 % oxygen saturation (S),
low bilirubin concentration, absence of oxidised and reduced cytochrome C oxidase, the values
of scattering coefficient and scattering power similar to the mean values reported for skin by
Jacques [4], no Rayleigh scattering, and standard thicknesses of epidermis and dermis reported
by Bashkatov et al. [1]. The tissue parameters for other skin spectra were varied within the
specified physiological ranges: melanin volume fraction was varied between 1 % and 5 % [4],
blood volume fraction between 0.2 % and 3.2 % [4], oxygen saturation on the interval of 15-90
% [4], bilirubin volume fraction between 1e-7 and 1e-2, as between 30 and 70 [1], bs between
0.7 and 2.1 [1], and epidermis thickness between 50 and 200 µm [1]. The red and green bolded
text in Table 1 highlights the optical parameters with values lower and higher than the baseline
spectrum, respectively. The values of deoxy- and oxyhaemoglobin, fHb and fHbO2 , are calculated
from the blood oxygenation, B, and oxygen saturation, S, using Eq. (5).

Table 1. Tissue parameters values for each simulated skin spectrum. Legend: * Baseline
spectrum, red - value lower than baseline, green - value higher than baseline

Tissue parameters

Spect.
No.

fm
[-]

fHb
[-]

fHbO2
[-]

fbrub
[mM]

fCO
[mM]

fCOO2
[mM]

as
[1/cm]

bs
[-]

fRay
[-]

de
[cm]

dd
[cm]

1 0.01 0.004 0.0024 1e-3 1e-7 1e-7 45 1.4 1e-7 0.010 1

2* 0.02 0.004 0.0024 1e-3 1e-7 1e-7 45 1.4 1e-7 0.010 1

3 0.05 0.004 0.0024 1e-3 1e-7 1e-7 45 1.4 1e-7 0.010 1

4 0.02 0.008 0.0048 1e-3 1e-7 1e-7 45 1.4 1e-7 0.010 1

5 0.02 0.020 0.0120 1e-3 1e-7 1e-7 45 1.4 1e-7 0.010 1

6 0.02 0.008 0.0016 1e-3 1e-7 1e-7 45 1.4 1e-7 0.010 1

7 0.02 1e-3 9e-4 1e-3 1e-7 1e-7 45 1.4 1e-7 0.010 1

8 0.02 0.004 0.0024 1e-7 1e-7 1e-7 45 1.4 1e-7 0.010 1

9 0.02 0.004 0.0024 1e-2 1e-7 1e-7 45 1.4 1e-7 0.010 1

10 0.02 0.004 0.0024 1e-3 1e-7 1e-7 30 1.4 1e-7 0.010 1

11 0.02 0.004 0.0024 1e-3 1e-7 1e-7 70 1.4 1e-7 0.010 1

12 0.02 0.004 0.0024 1e-3 1e-7 1e-7 45 0.7 1e-7 0.010 1

13 0.02 0.004 0.0024 1e-3 1e-7 1e-7 45 2.1 1e-7 0.010 1

14 0.02 0.004 0.0024 1e-3 1e-7 1e-7 45 1.4 1e-7 0.005 1

15 0.02 0.004 0.0024 1e-3 1e-7 1e-7 45 1.4 1e-7 0.020 1

Collectively, 27 different cases of fixed parameters selections were studied in this work. Table 2
presents the free (fitted) and fixed parameters for each fitting case, where the free parameters
are marked with the cross sign (×) and the fixed parameters with the filled square sign (■). In
the first case, denoted with the letter a, all parameters were free, whereas in other cases, up to 7
parameters were set to a fixed value. Tissue parameters such as melanin volume fraction, fm,
deoxy- and oxyhaemoglobin volume fractions, fHb and fHbO2 , and bilirubin concentration, fbrub,
were not fixed in any case because they significantly affect the reflectance spectra features, and
inadequate fits are obtained.
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Table 2. Free (×) and fixed (■) parameters for each fitting case.

Case
Tissue parameters

fm fHb fHbO2 fbrub fCO fCOO2 as bs fRay de dd

a × × × × × × × × × ×

b × × × × × × ■ × × × ×

c × × × × × × × ■ × × ×

d × × × × × × × × ■ × ×

e × × × × × × × × × ■ ×

f × × × × × × × × × × ■

g × × × × × × ■ ■ × × ×

h × × × × × × ■ × ■ × ×

i × × × × × × × ■ ■ × ×

j × × × × × × ■ ■ ■ × ×

k × × × × × × × × × ■ ■

l × × × × × × ■ × × ■ ■

m × × × × × × × ■ × ■ ■

n × × × × × × × × ■ ■ ■

o × × × × × × ■ ■ × ■ ■

p × × × × × × ■ × ■ ■ ■

q × × × × × × × ■ ■ ■ ■

r × × × × × × ■ ■ ■ ■ ■

s × × × × ■ ■ × × × × ×

t × × × × ■ ■ × × × ■ ■

u × × × × ■ ■ ■ × × ■ ■

v × × × × ■ ■ × ■ × ■ ■

w × × × × ■ ■ × × ■ ■ ■

x × × × × ■ ■ ■ ■ × ■ ■

y × × × × ■ ■ ■ × ■ ■ ■

z × × × × ■ ■ × ■ ■ ■ ■

zz × × × × ■ ■ ■ ■ ■ ■ ■

2.3. Finding the optimal set of fixed parameters

We investigated the impact of different sets of fixed parameters by repeatedly fitting the 15
selected skin spectra for all 27 fitting cases ten thousand times. This allowed us to find the right
balance between the time needed to complete the task and the desired statistical accuracy of the
results.

The AD algorithm used to simulate the skin spectra was implemented for GPUs in MATLAB
R2020b (Mathworks, MA). Diamond initialisation (DI) was utilised to simulate an initial thin
skin layer, and incoming and outcoming light was divided into 20 fluxes to ensure reasonable
accuracy. The maximum number of iterations of the LM algorithm was limited to 200, but the
mean number of iterations was 39± 17. Fitting was performed on a computer consisting of an
AMD Ryzen 7 1700X CPU, 16 GB RAM, and an Nvidia Titan Xp graphics card with 12 GB
RAM, where the batch size (simultaneous number of GPU threads) was set to 1000. Total fitting
time per spectrum was 0.14 to 1.8 s, and the mean value was 0.36 s± 0.62 s.
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Firstly, the coefficient of variation, R2, was calculated to evaluate the goodness-of-fit for each
fitted spectrum. The deviations in R2 originate from different initial parameters, which leads
to skin spectra converging to local minima instead of global. Therefore, the spectra for which
R2<0.99 were discarded for diverging too much from the simulated ones, while the remainder
was used in the analysis. Secondly, the determined parameters were normalised by dividing
them with the true parameters corresponding to the predetermined skin spectra. Then, root mean
square error (RMSE) for each normalised parameter of the remaining spectra was calculated,
resulting in one numerical value per parameter per simulated spectrum per case. Additionally,
the RMSE of fitted spectra was computed, obtaining one numerical value per simulated spectrum
per case.

Furthermore, squares of RMSE values of all predefined spectra within each case were summed
for each parameter. These cumulative values were characterised as measures of the accuracy
of the fitting process for the particular optical parameter within individual fitting cases. The
summation was repeated for all RMSE of the fitted spectra. As a result, the accuracy of the fitting
process for each fitting case was described by 12 numerical values: 11 cumulative RMSE2

param,i
values for the individual fitted parameters (i = 1, 2 . . . 11), and one cumulative value for the
fitted spectra, RMSE2

spec. Importantly, for the fixed parameters, the calculated RMSE value was
0.

Finally, a function, fRMSE(w1, w2), was defined to estimate the performance of the fitting
process for different fitting cases:

fRMSE(w1, w2) = w1 ·

11∑︂
i=1

RMSE2
param,i + w2 · RMSE2

spec, (9)

where w1 and w2 represent the weights of the combined fitted optical parameters RMSE value
(termed normalised cumulative RMSE of parameters) and the fitted spectra value (termed
normalised cumulative RMSE of spectra). The values of these weights are between 0 and
1. Large w1 implies that the combined RMSE of fitted optical parameters is more crucial for
estimating the fitting accuracy than RMSE of fitted spectra. The sum of weights w1 and w2
equals 1:

w1 + w2 = 1. (10)
The protocol for calculating fRMSE(w1, w2) is visually presented in Fig. S1 (see Supplement 1).

A similar approach was adopted to derive another estimation function based on the calculation of
mean absolute error (MAE):

fMAE(w1, w2) = w1 ·

11∑︂
i=1

MAEparam,i + w2 · MAEspec, (11)

where w1 and w2 are the respective weights of the fitted optical parameters MAE value and the
fitted spectra MAE value. As opposed to Eq. (9), MAE values are not squared before the addition
in Eq. (11). The lower the value of both estimation functions, the better the performance of the
fitting case.

The first estimation function, fRMSE(w1, w2), is based on the calculation of RMSE because it is
a standard measure of the differences between the observed values and values predicted by a
model. Unlike RMSE, a quadratic scoring rule, MAE is a linear score that measures the average
magnitude of the errors and is known to be less sensitive to outliers than RMSE. Thus, another
estimator function based on MAE was utilized to improve the analysis.

The accuracy and robustness of the IAD algorithm for simulated spectra were evaluated as the
agreement of mean (or median) values of fitted parameters and actual values and as a dispersion
of fitted parameters, respectively. The performance was also evaluated using the two estimation
functions, fRMSE(w1, w2) and fMAE(w1, w2).

https://doi.org/10.6084/m9.figshare.17315057
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2.4. Fitting skin spectra with noise

In addition to fitting noiseless skin spectra, predetermined simulated skin spectra were augmented
by adding different noise levels and fitted using the IAD method to show that the proposed
approach works with realistic, noisy spectra. Specifically, three different noise levels with a
constant signal-to-noise ratio (SNR) were added, namely 30, 50 and 100 dB. The middle noise
level was estimated to correspond average SNR of the experimental hyperspectral imaging
system, whereas the first and the last SNR values represent the cases with a high and low degree
of experimental noise, respectively. We avoided adding more noise to the simulated spectra
(decreasing SNR) to comply with the experimental values obtained on our hyperspectral system
presented in 2.5.

Noisy spectra, Sn, were generated using the following equation:

Sn = S0 + α · n, (12)

where S0 is the noiseless spectrum, n is normally distributed random noise, and α is a scalar
coefficient that yielded a predefined SNR.

2.5. Fitting in-vivo skin spectra

The last step involved fitting measured in-vivo skin spectra recorded with our hyperspectral
imaging (HSI) system thoroughly described in [30]. Briefly, the system consists of two modules,
namely the push-broom hyperspectral imaging module and the optical profilometry (OP) module.
The former is used to record hyperspectral images in the 400-1000 nm wavelength range with 2
nm spectral resolution, whereas the latter provides the 3D surface shape of the imaged sample
needed for the curvature correction of the recorded images [30].

Raw hyperspectral image, Iraw, was first converted to reflectance, Iref, using equation [31]:

Iref =
Iraw − Idark
Iraw − Iwhite

, (13)

where Iwhite and Idark are the white reference and dark current images, respectively. By utilising
the 3D surface shape data, normalised hyperspectral images were then corrected following the
procedure described in [30]. Specifically, Lambert cosine law and height corrections were
applied, resulting in fewer image artefacts caused by sample height and surface angle variations.
Finally, images were spatially and spectrally reduced ten- and fivefold to expedite the analysis,
respectively. The spectral band of hyperspectral images used in this study was 430-750 nm with
a 5 nm step. The longer wavelength part of the spectrum was not included because additional
absorbers (i.e., water and lipids) should be added to the model, further impinging the analysis.

Six healthy volunteers aged 23 to 24 were included in the study. Three hyperspectral images
of fingers were recorded for each participant: before, during, and after arterial occlusion [16].
During the arterial occlusion, the blood pressure cuff placed around the upper arm was inflated
to 200 mmHg and left for approximately 3 minutes. However, one image obtained during arterial
occlusion was discarded due to insufficient OP data, resulting in 17 hyperspectral images analysed
with the IAD algorithm. The experimental protocol conforms to the principles expressed in the
Declaration of Helsinki and was approved by the Slovenian National Medical Ethics Committee
(0120-629/2016-3; KME 66/01/17). Informed consent was obtained from all subjects included
in the study.

Since the ground truth values of the experimental skin parameters are unknown, two approaches
were tested. In the first approach, the values of all model parameters were adopted from the
literature (Table 3). In another approach, optimal initial parameter values were pre-estimated
before attempting the actual fitting process of the whole image. Specifically, for each processed
hyperspectral image of a hand, a 20× 20 px region of interest (ROI) was selected from which a
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Table 3. The values of initial model parameters used in the first approach of
fitting in-vivo measured hyperspectral images of human hands.

fm
[-]

fHb
[-]

fHbO2
[-]

fbrub
[mM]

fCO
[mM]

fCOO2
[mM]

as
[1/cm]

bs
[-]

fRay
[-]

de
[cm]

dd
[cm]

0.01 0.01 0.01 0.01 0.001 0.001 45 1.4 1e-7 0.010 1

mean spectrum was calculated. The mean spectrum was then repeatedly fitted 1000 times using
different randomly selected initial parameter values and the parameters from the single best fit
(the one with the highest R2 value) were taken as the optimal parameters, and the parameters were
either fixed or further estimated (free parameters) in the actual image fitting process accordingly.

For experimental spectra, the robustness was assessed similarly to the simulated data, whereas
accuracy was estimated by comparing fitted values to other studies since the actual values of
parameters are unknown.

3. Results

3.1. Spectra simulation

A total of 15 skin spectra simulated from tissue properties presented in Table 1 with the two-layer
AD algorithm used in this study are shown in Fig. 2 Reference source not found.. The baseline
spectrum (Spectrum 2) is coloured in a thick light blue line. Notably, different values of tissue
parameters affect spectra shape significantly. For example, a 5 % melanin content in Spectrum 3
(purple line) markedly reduces the reflectance on the entire wavelength interval and obscures
other spectral characteristics.

Fig. 2. Skin spectra simulated with a two-layer AD algorithm. Numbers 1 to 15 represent
the serial number of the spectra, and 2 is the baseline spectrum (thick light blue solid line).

3.2. Fitting noiseless simulated spectra

3.2.1. No fixed parameters (fitting case a)

Four examples of noiseless simulated skin spectra fitted with all 11 parameters free (fitting case a
in Table 1) are shown in Fig. 3. Figure 3(a-d) correspond to Spectrum 1, 5, 9, and 14, respectively.
The simulated skin spectra (blue line) are presented alongside the mean fitted spectra (orange
line) and the standard deviation of the fitted spectra (orange shade). Notably, the mean fitted
spectra agree well with the simulated spectra and are generally within the ±1 STD range of the
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Fig. 3. Noiseless simulated skin spectra fitted without any fixed parameters (fitting case a
in Table 2). Solid blue lines represent noiseless simulated skin spectra, solid orange lines
represent the mean fitted spectra, and orange shaded areas represent one standard deviation
region. The examples presented are a) Spectrum 1, b) 5, c) 9, and d) 14. Figure 3(e-h)
represent the corresponding values of the fitted parameters in boxplot diagrams. On each
blue box, the central mark indicates the median, and the bottom and top edges indicate the
25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points
not considered outliers, and the outliers are plotted individually using the red plus (+) marker
symbol. The actual value for each parameter is plotted with a green diamond.
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simulated spectra on the entire wavelength interval. However, slight deviations are present for
wavelengths up to 450 nm. Figure 3(e-h) show the associated values of the fitted parameters
plotted conveniently in box plots. On each blue box, the central mark indicates the median
value, and the bottom and top edges indicate the 25th and 75th percentiles, respectively. One can
observe that despite fitted spectra corresponding to the measured spectra (Fig. 3(a-d)), the values
of estimated parameters in Fig. 3(e-h) are somewhat scattered, as also indicated by many outliers
(red plus marks). Generally, the median values of estimated parameters such as fm are higher
than the actual values (green diamond marks). However, the actual values are generally within
the 25th to 75th percentile of the fitted values except for some parameters such as bs in Fig. 3(g),
meaning that the fitted values of optical parameters agree well with the actual values. To support
this statement, numerical data for these four cases are presented in Table 4. Evidently, the mean
values of the fitted parameters are within ±1 STD from the actual ones, but STD for most fitted
parameters is of the same order of magnitude as the mean fitted parameters values.

Table 4. Mean values of the fitted parameters and the corresponding standard
deviations for four different spectra (Spectrum 1, 5, 9, and 14) in the case of no fixed

parameters (fitting case a). All fitted parameters are within the range of the actual
values.

Spect.
No.

fm
[-]

fHb
[-]

fHbO2
[-]

fbrub
[mM]

fCO
[mM]

fCOO2
[mM]

as
[1/cm]

bs
[-]

fRay
[-]

de
[cm]

dd
[cm]

1 0.015
±

0.015

0.008
±

0.006

0.005
±

0.006

0.005
±

0.104

0.051
±

0.182

0.294
±

0.477

71.4
±

26.5

1.16
±

0.71

0.108
±

0.162

0.010
±

0.005

2.71
±

3.35

5 0.025
±

0.016

0.024
±

0.013

0.020
±

0.015

0.007
±

0.018

0.058
±

0.167

0.380
±

0.559

56.5
±

17.5

1.15
±

0.51

0.125
±

0.152

0.009
±

0.003

2.08
±

2.36

9 0.020
±

0.016

0.005
±

0.006

0.008
±

0.009

0.016
±

0.029

0.043
±

0.148

0.292
±

0.468

63.1
±

21.9

0.79
±

0.70

0.079
±

0.137

0.015
±

0.009

2.72
±

3.21

14 0.018
±

0.018

0.008
±

0.006

0.004
±

0.004

0.005
±

0.010

0.035
±

0.135

0.259
±

0.448

66.6
±

25.5

1.07
±

0.67

0.109
±

0.161

0.008
±

0.004

2.77
±

3.36

The correlation coefficients between the parameters were calculated and are graphically
presented in Fig. S2 (see Supplement 1) for the selected four spectra. Multiple pairs of the
parameters express a high degree of either positive (e.g., fHb and fbrub in the case of Spectrum 9 in
Fig. S2(c) or negative correlation (e.g., as and de in the case of Spectrum 1 in Fig. S2(a), whereas
no correlation is found for some parameters (e.g., fCO and fRay in the cases of Spectrum 9 and 14).
Overall, a high degree of negative correlation exists between fm and de due to the same effect on
the reflectance spectra (both a high fm and a thick epidermis reduces the reflectance). Therefore,
a high fm results in a thin epidermis, and vice-versa. However, the degree of correlation between
different pairs of parameters varies significantly for simulated spectra, indicating that individual
values of parameters vastly affect the fitting process. As a result, no typical pattern for the degree
of correlation between parameters was found for different simulated spectra.

3.2.2. Fixed bs, fRay, de, dd (fitting case q)

In the following case, two scattering parameters and the layer thicknesses were fixed to demonstrate
the effect of parameters fixation on the fitting performance. Figure 4(a-d) show the simulated
spectra (Spectrum 1, 5, 9 and 14), the mean fitted spectra and the fitted spectra standard deviation.
Similarly to the previous subsection, the mean spectrum generally agrees well with the actual
simulated spectrum on the entire 430-750 nm interval, except for minor deviations below 450
nm. Figure 4(e-h) compare the actual parameters values of the simulated spectrum (green
diamond) and the values obtained by fitting (box plots). Evidently, some of the fitted values

https://doi.org/10.6084/m9.figshare.17315057
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differ from actual values for more than ±1 STD, as presented in Table 5 (red text). Specifically,
as is inaccurate for three of the four presented spectra, possibly as a results of other scattering
parameters being fixed. Nevertheless, this case still yields more precise results than case a, as
demonstrated by generally lower STD values of estimated parameters in Table 5 than Table 4. In
Fig. 4(e-h), the fixed parameter’s values are not presented since they match the actual values.

Table 5. Values of the mean fitted optical parameters and the
corresponding standard deviations for four different spectra

(Spectrum 1, 5, 9, and 14) for the fitting case q. The mean
values of fitted parameters that differ for more than ±1 STD

from the actual values are highlighted in red.

Spect.
No.

fm
[-]

fHb
[-]

fHbO2
[-]

fbrub
[mM]

fCO
[mM]

fCOO2
[mM]

as
[1/cm]

1 0.013
±

0.002

0.006
±

0.002

0.002
±

0.002

0.000
±

0.002

0.005
±

0.025

0.166
±

0.269

62.1
±

11.6

5 0.021
±

0.005

0.019
±

0.006

0.017
±

0.0010

0.004
±

0.010

0.061
±

0.152

0.352
±

0.447

49.9
±

9.9

9 0.024
±

0.005

0.003
±

0.003

0.006
±

0.003

0.008
±

0.011

0.011
±

0.046

0.515
±

0.497

70.2
±

17.7

14 0.025
±

0.005

0.005
±

0.002

0.002
±

0.002

0.000
±

0.001

0.006
±

0.024

0.201
±

0.282

60.0
±

14.2

The correlation matrices for the selected spectra and all pairs of fitted parameters are shown in
Fig. S3. Visual comparison to the matrix in Fig. S2 shows that different parameters correlate
depending on the fixation. For example, parameters fHb and fHbO2 express a high degree of
negative correlation in the fitting case q, but are much less correlated in the fitting case a where
all parameters are free – likely due to these two parameters compensating the fixation of others in
case q, effectively acting contrary to one another.

3.2.3. Finding the optimal set of fixed parameters

Following the procedure outlined in 0, we evaluated the effect of fixing different sets of optical
parameters on the accuracy and robustness of the fitting process, employing two different
estimators, Eq. (9) and Eq. (11), and applying different weights w1 and w2. The value of weight
w1 was incrementaly changed from 0 to 1, with a 0.1 step, whereas the value of weight w2 was
calculated from Eq. (10). Figure 5(a-b) show the values of the two estimation functions for
different fitting cases, while Fig. 5(c) shows the absolute difference between the two. It can be
seen from Fig. 5(a) that an increase in w1 (decrease in w2) leads to an increase in the value of
fRMSE(w1, w2) – except in case h, where the contribution of both RMSE is similar. It implies that
the RMSE of the parameters is generally higher than the RMSE of spectra. The RMSE of the
parameters decreases substantially (Fig. 5(a), w1 = 1) as fCO and fCOO2 are fixed starting from
case s. As the estimated values of these two parameters have high STD values (see Table 4 for
case a and Table 5 for case q), fixing them reduced the RMSE of parameters considerably. A
similar observation holds for fRay. On the other hand, the RMSE of spectra (Fig. 5(a), w1 = 0)
does not show such a trend and is dependent on the specific selection of the fixed parameters.
The graphs in Fig. 5(b) do not follow a similar trend but instead fluctuate, indicating that the
MAE of parameters and spectra have comparable values and are thus both sensitive to reduction
of the free parameters. Moreover, MAE values are less sensitive to specific parameters than
RMSE values.
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Fig. 4. Noiseless simulated skin spectra fitted with four parameters fixed: (fitting case q
in Table 2). Solid blue lines represent noiseless simulated skin spectra, solid orange lines
represent the mean fitted spectra, and orange shaded areas represent one standard deviation
region. The examples presented are a) Spectrum 1, b) 5, c) 9, and d) 14. Figure 4(e-h)
represent the corresponding values of fitted parameters in boxplot diagrams. The actual
value for each parameter is plotted with a green diamond.
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Fig. 5. The values of two estimation functions: a) fRMSE(w1, w2) and b) fMAE(w1, w2). c)
The absolute difference of fRMSE(w1, w2) and fMAE(w1, w2). Weights w1 and w2 occupy
discrete values between 0 and 1, with a step of 0.1.

The minima of both f RMSE and f MAE are present for the same fitting cases (w and y – zz),
indicating that both measures favour a lower number of free parameters. Finally, the absolute
difference of the two functions seen in Fig. 5(c) is generally the lowest for w1 = 1 (w2 = 0) and
the highest for w1 = 0 (w2 = 1), suggesting that the RMSE and MAE values of the parameters
are similar, but the RMSE and MAE values of spectra are not. Based on the above observations,
MAE is better for assessing fitting performance.

The absolute minimum values of fRMSE(w1, w2) are obtained for cases z and zz (Fig. 5(a)). As
the value of w1 increases (w2 decreases), the values of fRMSE(w1, w2) for case z become lower
than those of case zz – the shift occurring at around w1 = 0.2 (w2 = 0.8). A similar pattern can
be seen in Fig. 5(b) for the values of fMAE(w1, w2) for cases z and zz, only this time the shift
occurs at approximately w1 = w2 = 0.5.

Figure 6 shows the leaderboards for the values of two estimation functions, namely a)
fRMSE(w1, w2) and b) fMAE(w1, w2). The purpose of these images is to aid the process of finding
the optimal set of fixed parameters (the most optimal fitting case). Images visually present the
cumulative number of times each fitting case ranks 1 (the highest) to 27 (the lowest) in terms
of the value of the estimation function as the weights are gradually changed. For example, as
seen in the top right corner of Fig. 6(a), fitting cases z and zz are the only ones ranking the
highest on the leaderboard, meaning they had the lowest value of the fRMSE(w1, w2) and thus
performed the best in terms of accuracy and robustness. Specifically, case z ranked the highest in
9 instances (colour-coded in yellow) and case zz in 2 instances (bluish-purple colour). A similar
pattern is apparent in Fig. 6(b), where case z ranked the highest five times (in teal), and case zz
ranked the highest a total of 6 times (in light green). The worst performing fitting cases are h
in terms of fRMSE(w1, w2), which ranked the lowest in 10 instances (in yellow), and k in terms
of fMAE(w1, w2), which ranked the lowest 8 times (in orange). Notice that for both estimators,
leaving all parameters free as in case a produces better results than fixing inappropriate sets of
parameters, such as cases b, f, h and l.

The normalised cumulative RMSE and MAE values of estimated optical parameters (first
terms in Eq. (9) and Eq. (11), respectively) were compared to normalised cumulative RMSE
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Fig. 6. The leaderboards for estimation functions a) fRMSE(w1, w2) and b) fMAE(w1, w2)
demonstrate the success of the fitting process for different fitting cases and all combinations
of weights w1 and w2. Colour-coded is the number of occurrences, i. e. the number of times
each fitting case takes a particular place in the leaderboard when the values of estimation
functions are ranked from 1 – highest to 27 – lowest.

and MAE values of fitted spectra (second terms in Eq. (9) and Eq. (11), respectively) with
respect to the number of fixed optical parameters as seen in Fig. 7. Specifically, normalised
cumulative RMSE and MAE values of model parameters were plotted with orange circles, and
normalised cumulative RMSE and MAE values of fitted spectra were plotted with blue circles,
where each circle represents one of the fitting cases (a-zz). Filled circles represent fitting cases
where both fCO and fCOO2 or fRay are fixed. Solid blue and orange lines with error bars show the
corresponding mean spectra and model parameters RMSE and MAE values.

The purpose of calculating the normalised cumulative RMSE and MAE values is to assess the
contribution of parameters error and fitted spectra error in Eq. (9) and Eq. (11) separately and
find out how the contributions change as the number of fixed parameters increases. Importantly,
graphs in Fig. 7(a) show that mean RMSE values for parameters remain constant as the number of
fixed parameters increases from 0 to 4, followed by a significant decrease as more parameters are
fixed. Meanwhile, the RMSE of spectra peaks at two fixed parameters, then gradually decreases.
A similar trend is observed for mean MAE values in Fig. 7(b), but the mean MAE values of
spectra culminate at four fixed parameters before gradually dropping. It demonstrates that as
the number of fixed parameters increases to a particular value, the fitted spectra agree less with
the actual spectra, whereas the variance of parameters remains relatively unchanged. Then, as
the number of fixed parameters is further incremented, the fitted spectra are in a much greater
agreement with actual ones, and the variance of optical parameters decreases, resulting in a more
accurate and robust fitting process.

Filled circles representing fitting cases (where both fCO and fCOO2 or fRay are fixed) confirm
our previous findings that these parameters systematically improve the fitting performance.
Specifically, fitting these parameters resulted in the lowest normalised cumulative RMSE of
parameters and spectra for two to four fixed parameters.

3.3. Fitting noisy simulated spectra

Figure 8(a) shows Spectrum 1 with three different noise levels added, i.e. noise with constant
SNR values of 30, 50 and 100 dB, respectively. It can be seen that spectra with the average
experimental SNR of 50 dB and a low degree of noise (SNR of 100 dB) agree very well,
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Fig. 7. a) Normalised cumulative a) RMSE and b) MAE values of fitted spectra (blue
circles) and estimated parameters (orange circles) with respect to the number of fixed model
optical parameters. Solid orange and blue lines with error bars represent the corresponding
mean values. Filled circles represent cases where both fCO and fCOO2 or fRay are fixed.

coinciding with the noiseless skin spectrum (black dashed line with crosses) almost perfectly.
On the other hand, a low SNR value results in a much higher noise, altering the simulated skin
spectrum but preserving its original shape.

Two representative fitting cases, a (all free parameters) and z (five free parameters), were
further studied by applying the three different noise levels. The latter is the overall top-performing
case from the previous section with six fixed parameters, whereas the former is a relatively
well-performing case with all free parameters and the most degrees of freedom. Figure 8(b-c)
show the simulated spectrum (Spectrum 1) with added 30 dB noise, the mean fitted spectrum,
and the standard deviation of the fitted spectra for fitting cases a and z, respectively. Notably,
the standard deviation in case z is much lower (on average for around 50%) than in case a,
suggesting better matching of fitted and noisy simulated spectra. Figure 8(d-e) compares actual
and estimated values of all model parameters. The relative deviation of mean parameters from
the actual values for the first three parameters in case a is 98%, 50%, and 165%; it is equal to
44%, 7% and 3% in case z, respectively. Parameter estimations are therefore more accurate in
case z than in case a. Moreover, the parameters are less scattered in case z, as demonstrated by a
lower standard deviation of parameters than in case a. Specifically, STD of fm, fHb and fHbO2 was
5, 8 and 3 times higher in case a than in case z.

As in the previous section, we evaluated the fitting performance of cases a and z with different
noise levels applied. Figure 9 shows the values of estimation functions fRMSE(w1, w2) and
fMAE(w1, w2). Note that the values of the two estimation functions follow a common trend. More
precisely, when only the error of spectra is considered (w1 = 0), both estimators have a high value
for cases a and z with the highest level of noise added (30 dB), implying the most considerable
mismatch between simulated and fitted spectra. As w1 is gradually increased, and parameters
error is taken into account, the values of the estimation functions are becoming significantly
lower for case z than case a and generally decrease as less noise is present in the simulated spectra.
These results show that reducing the number of free parameters improves the performance of the
fitting process significantly, also in the case of noisy spectra.

This claim is supported by Fig. 10, which shows the leaderboards for both estimation functions.
As can be seen, the majority of occurrences lie on the diagonal between the bottom left (all free
parameters with the highest level of noise added rank the lowest) and the top right (six fitted
parameters with the lowest noise level rank the highest).
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Fig. 8. a) An example of a simulated skin spectrum (Spectrum 1) with different noise levels
added. Specifically, noise levels with a constant SNR value were added, namely 30, 50 and
100 dB. b, c) Simulated skin spectrum (Spectrum 1) with added 30 dB noise, the mean fitted
spectrum and the standard deviation of fitted spectra in cases a and z, respectively. d, e) The
comparison of actual and estimated optical parameters in cases a and z, respectively.

3.4. Fitting in-vivo measured skin spectra

3.4.1. First approach

Shown in Fig. 11 are in-vivo measured (solid blue line) and fitted (solid orange line) skin spectra
from selected pixels in the middle finger of a human hand (participant 2) for different phases of
the arterial occlusion test. Measured spectra shown in the top row were fitted using case a (all
free parameters), whereas the spectra in the bottom row were fitted using case z. In both cases,
the first fitting approach was taken where initial parameters from Table 3 were input to the IAD
algorithm. Notably, the measured and fitted spectra match very well for all stages of the arterial
occlusion test: before (a, d), during (b, e), after (c, f).

Figure 12 shows colour maps of three optical parameters extracted from a hyperspectral image
of a human hand (participant 2) recorded before the arterial occlusion test: fm (a, d), fHb (b, e) and
fHbO2 (c, f). Color maps in the top row were extracted using fitting case a and those in the bottom
row using case z. The mean values of the estimated parameters are: the mean values of fm are
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Fig. 9. The values of the two estimation functions for fitting cases a and z with different
noise levels added: a) fRMSE(w1, w2) and b) fMAE(w1, w2). Weights w1 and w2 occupy
discrete values between 0 and 1, with a step of 0.1.

Fig. 10. The leaderboards for estimation functions a) fRMSE(w1, w2) and b) fMAE(w1, w2)
for fitting cases a and z with different noise levels added and all combinations of w1 and w2.

0.71%± 0.27% (case a) and 0.87%± 0.50% (case z), the mean values of fHb are 1.79%± 0.69%
(case a) and 2.04%± 0.63% (case z) and the mean values of fHbO2 equalled to 1.94%± 1.04%
(case a) and 1.70%± 1.00% (case z). All mean values were calculated for the inner part of the
hand and fingers of participant 2 recorded before the vascular occlusion test, where the surface
inclination angle was lower than 45°. In this way, we removed the hand edges, where the spectra
are altered significantly due to signal loss, resulting in incorrect parameter estimation.

All colour maps displayed for case z (Fig. 12(d-f)) appear more continuous and less grainy than
for case z (Fig. 12(a-c)), highlighting detailed features such as wrinkles and blood vessels. At
first glance, though, the colourmaps of fm might seem more heterogeneous for case z (Fig. 12(d))
than case a (Fig. 12(a)) – which is attributed to the absence of details in case z, also reflected by a
higher standard deviation of fm in case z than in case a. These findings can be generalised for all
in-vivo measured hyperspectral images used in this study.

To confirm our visual findings, we applied the 2D fast Fourier transform (FFT) to each parameter
image of all participants included in this study and calculated the mean ratio of magnitudes for
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Fig. 11. In-vivo measured (solid blue line) and fitted (solid orange line) skin spectra fitted
using case a (a-c) and case z (d-f) of participant 2 in different stages of the arterial occlusion
test: before (a, d), during (b, e), and after (c, f).

Fig. 12. Colour maps of fm (a, d), fHb (b, e) and fHbO2 (c, f) extracted from a hyperspectral
image of a human hand (participant 2) recorded before arterial occlusion test using fitting
case a (top row) and case z (bottom row). In this fitting approach, the initial parameters
presented in Table 3 were input in the IAD algorithm. Framed areas represent zoomed-in
distributions of parameters on the middle finger outlined by the black rectangle.

cases a and z with respect to annuli with increasing inner and outer radii. These annuli with
increasing inner and outer radii were generated to cover the entire spatial frequency domain space
(k-space) of a spatial Fourier transform of 2D parameter distribution maps. Figure 13(a) shows
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Fig. 13. a) 11 annuli with varying inner and outer radii used in the analysis of FFT parameter
images. b) Mean FFT magnitude ratio (case a to case z) of estimated optical parameters as a
function of annulus number.

the 11 annuli with a 10 px width used in the calculation, whereas Fig. 13(b) displays the mean
FFT magnitude ratio for five optical parameters inside respective annuli. The latter figure shows
that the ratios generally increase as we move away from the centre of the k-space. Since the
areas away from the centre and towards the edges of the k-space have a higher spatial frequency,
this indicates that parameter images extracted using case a contain signal with higher spatial
frequency and are thus noisier than those in case z.

3.4.2. Second approach

In another approach described in Section 2.5, initial fitting parameters were pre-estimated rather
than instinctively input in the IAD algorithm. A comparison reveals that colour maps in case
a (Fig. 14(a-c)) are now less textured compared to their equivalents in Fig. 12(a-c), whereas
those in case z (Fig. 12(d-f) and Fig. 14(d-f)) generally maintain the contrast and the texture of
parameter images in the first approach.

Table 6. The mean values of fm, fHb and fHbO2
for two different approaches

and fitting cases (a, z).

First approach Second approach

Case a Case z Case a Case z

fm [%] 0.71%± 0.27% 0.87%± 0.50% 1.66%± 0.42% 2.11%± 0.98%

fHb [%] 1.79%± 0.69% 2.04%± 0.63% 2.30%± 0.87% 2.25%± 0.87%

fHbO2 [%] 1.94%± 1.04% 1.70%± 1.00% 2.76%± 1.35% 2.59%± 1.21%

The mean values of parameters for participant 2 are higher than in the first approach: the mean
values of fm are 1.66%± 0.42% (case a) and 2.11%± 0.98% (case z), the mean values of fHb
are 2.30%± 0.87% (case a) and 2.25%± 0.87% (case z) and the mean values of fHbO2 equal to
2.76%± 1.35% (case a) and 2.59%± 1.21% (case z). The results for both approaches and fitting
cases are summed up in Table 6.

Shown in Fig. 15 is the mean FFT magnitude ratio of five optical parameters computed inside
the annuli showcased in Fig. 13(a). Notably, the ratios remain stationary as we move away from
the centre of the k-space, demonstrating that in this approach, the quality of parameter images in
terms of noise in case a is equal to case z.
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Fig. 14. Colour maps of fm (a, d), fHb (b, e) and fHbO2 (c, f) extracted from a hyperspectral
image of a human hand (participant 2) recorded before arterial occlusion test using fitting case
a (top row) and case z (bottom row). In the second fitting approach, the initial parameters
were pre-estimated and input in the IAD method. Framed areas represent zoomed-in
distributions of parameters on the middle finger outlined by the black rectangle.

Fig. 15. Mean FFT magnitude ratio (case a to case z) of estimated optical parameters as a
function of annulus number.

4. Discussion

Several significant implications of this study will be discussed categorically in this section. These
findings can guide the development of new skin models and fitting diffuse reflectance spectra
recorded with optical imaging techniques such as HSI or diffuse reflectance spectroscopy (DRS).

Estimating skin properties from diffuse reflectance spectra requires modelling skin tissue,
considering its layered anatomical structure and absorption and scattering properties originating
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from absorbers and scatterers present in the tissue. Although many studies employed a large
variety of skin tissue models and included various optical properties, little research has been done
to assess the model’s performance at fixing different model parameters. Nevertheless, this is a
crucial component in the spectra fitting process as adopting reported values of optical properties
from the literature can significantly alter the accuracy and precision of estimating variable model
parameters. Therefore, this work provides a thorough analysis of this topic.

To begin with, a visual comparison of four simulated noiseless skin spectra (Spectrum 1, 5,
9 and 14) in Fig. 3(a-d) fitted with all free parameters (case a) and the identical spectra fitted
with four fixed parameters (case q) in Fig. 4(a-d) reveals only minor differences between the
two cases. On the contrary, a comparison of estimated optical parameters values shown in
Fig. 3(e-h) and Fig. 4(e-h) exposes a significant difference in the standard deviation between
the two fitting cases, supported by numerical data presented in Table 4 and Table 5. An almost
identical fitting performance in cases a and q with respect to spectra results in an overall lower
standard deviation of estimated optical parameters in case q. However, as Table 5 suggests, many
estimated values in case q are far-off from the true ones. From this, two key findings can be
generalised to other fitting cases. Firstly, fixing parameters leads to a less accurate but more
precise (robust) estimation of variable parameters. Secondly, irrespective of the fixed parameters,
an infinite number of spectra can be simulated from the optical parameters that match the actual
simulated skin spectrum almost perfectly but yield significantly different values of estimated
optical parameters. This result is in accordance with the findings of Bjorgan and Randeberg [24],
who observed the same phenomenon for different model geometries used in their IMC model.

Furthermore, fixing parameters reduces the model’s number of degrees of freedom, usually
lowering the standard deviation of estimated parameters while resulting in (visually) equivalent
skin spectra. However, parameters are correlated due to skin reflectance modelling, and fixing
different sets of model parameters changes the correlation between the pairs of parameters, as
shown in Fig. S2 and Fig. S3. Therefore, one cannot simply conclude that fixing more parameters
will result in more compliant spectra and less scattered values of estimated optical parameters.

A detailed analysis of our model’s performance based on the calculation of normalised
cumulative RMSE (Eq. (9)) and MAE (Eq. (11)) values for skin spectra and optical parameters
confirms the presence of an interesting pattern: some parameters such as fCO, fCOO2 and fRay
greatly contribute to the error in the parameters but barely affect the spectrum shape and thus its
error. On the other hand, a slight change in parameters such as fHb and fHbO2 could affect the
spectrum considerably. Thus, it is expected that fixing parameters such as fCO and fCOO2 could
systematically improve the fitting performance, and that case s is superior to most other cases
where the majority of parameters are fixed (see Fig. 5(a)).

If the fitting cases are evaluated with respect to the number of fixed optical parameters instead
of case-by-case comparison, another compelling conclusion can be drawn. Figure 7 demonstrates
that as more optical parameters are fixed, up to a certain point, the overall error of the estimated
optical parameters remains stationary, whereas the RMSE and MAE errors of spectra increase in
value due to poorer spectra matching owing to fewer degrees of freedom of the model. Specifically,
the fitting algorithm has fewer possibilities in fitting the spectrum than when all parameters are
free, leading to worse spectra agreement. Meanwhile, the parameter space is still large enough
(infinite) that the error of the estimated parameters remains unchanged. As more parameters are
fixed after the shifting point, errors in both spectra and variable optical parameters gradually
decrease – the parameter space is now reduced substantially, leading to much fewer remaining
combinations of fitted spectra and a smaller number of local minima. This finding implies
that fixing too few parameters may not help to improve the overall fitting accuracy but rather
deteriorate it; yet, fixing even more parameters could result in much more robust and accurate
simulated skin spectra fitting.
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The analysis of two selected fitting cases, a and z, with different noise levels added to the
simulated skin spectra, offers some expected results: for a particular case, the model’s general
fitting performance (the error) is worst for the highest level of noise added (SNR of 30 dB), and
best for the lowest noise applied (SNR of 100 dB) as seen in Fig. 9. What is more interesting
is that the performance in case z is superior to performance in case a, as demonstrated by the
lower standard deviation of spectra (Fig. 8(b-c)) and estimated optical parameters (Fig. 8(d-e)),
confirming our previous findings in case of the noiseless simulated spectra.

In addition to the simulated spectra, experimental skin hyperspectral images were analysed
to showcase the IAD algorithm’s performance on real-world data. In the biomedical optics
field, the IAD method was primarily used in DRS measurements involving single- or double-
integrating sphere systems to determine the optical properties of tissue-mimicking phantoms
[32–36], biological tissues [1,37–41] and tissue components such as blood [42] and melanin
[43]. However, similarly to widely known MCML [26] used in the light transport modelling
of multi-layered tissue, IAD can be applied to other detection schemes such as hyperspectral
imaging, provided that the spatially resolved information is not obtained, that laterally uniform
illumination is considered, and light is normally incident upon the sample.

Figure 11 clearly shows that the algorithm performs exceptionally well in fitting cases a and
z, with an almost perfect match between the measured and fitted skin spectra. A comparison
of colour maps for different parameters of participant 2 (recorded before vascular occlusion)
in Fig. 12 reveals a better performance of fitting case z than case a. Specifically, parameter
distribution maps extracted with case z appear less textured, grainy and more continuous than
in case a. As a result, the visibility of details such as wrinkles and blood vessels in case a is
compromised, and image contrast deteriorates. What is more, the mean FFT magnitude ratios
shown in Fig. 13(b) for different parameters increase with higher spatial frequency, confirming
that parameter maps in case a contain much more noise than those in case z. From this, we
can conclude that fixing multiple parameters indeed improves the parameter extraction from
hyperspectral images.

In the first approach, the initial set of parameters was adopted from the literature (see Table 3).
Instead, if the parameters are pre-estimated using the second approach described in 2.5, the
smoothness of colour maps can be improved significantly in case a, as seen by comparing colour
maps in Fig. 12(a-c) and Fig. 14(a-c). On the contrary, there is no visible improvement in terms of
smoothness (or texture) in case z (colour maps in the bottom rows in Fig. 12(d-f) and Fig. 14(d-f)).
All maps are equally smooth, although the values of parameters are generally higher in the
second approach. We hypothesise that by pre-estimating model parameters, results are more
improved in case a because it is less robust than case z, where multiple model parameters are
fixed. Pre-estimated parameters are input into the fitting algorithm to perform the actual fitting
process. Because these pre-estimated parameters provide a much better initial guess than the
general assumptions (Table 3), the estimated skin parameters are less scattered. However, in case
z, the fitting algorithm is intrinsically more robust due to multiple fixed parameters, diminishing
the effect of parameter pre-estimation on the parameter estimation robustness. Our claim is
supported by Fig. 15, which shows that the ratios of FFT magnitude of estimated parameters
remain constant as the spatial frequency increases – meaning that there is now an equal amount
of noise in parameter images of both fitting cases.

As indicated by the higher mean values of estimated parameters in the second approach (see
Table 6), parameter pre-estimation forces the fitting algorithm into a different, possibly global
minimum, than the first approach. Undoubtedly, this leads to the algorithm searching parameter
values close to the pre-estimated values and making the parameter distributions smoother. Such
parameter maps generally correspond to natural skin but might overlook sudden heterogeneities
such as skin moles (nevi) and blood vessels. However, the LM fitting algorithm can find the
optimal solution even if the initial guess is far-off, and as seen by comparing colourmaps in
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Fig. 12 to Fig. 14, minor changes in parameters values are well pronounced in the latter. In fact,
as the colourmaps in Fig. 14 contain less noise than in Fig. 12, the signal-to-noise ratio (SNR) is
increased, and heterogeneities should be more noticeable.

To demonstrate that pre-estimating model parameters can improve the detection of sudden
minor changes in tissue parameters, we simulated a 100× 100 px skin phantom with multiple
skin nevi. Specifically, the majority of skin was generated from baseline spectra (Spectrum
2 in Fig. 2), whereas skin nevi were generated from Spectra 3, all with added 30 dB noise to
simulate skin and detector inhomogeneity. Therefore, the tissue properties outside and inside
the nevi were identical except for fm, which was on average 2% and 5% inside and outside nevi,
respectively. Three circular skin nevi were generated with different radii (1 px, 5 px and 10 px).
Figure 16(a) shows the fm map extracted using fitting case a (no fixed parameters) and the first
approach, whereas Fig. 16(b) displays the fm map extracted using fitting case a and the second
approach with parameter pre-estimation.

Fig. 16. fm maps extracted using fitting case a (no fixed parameters) and a) the first or b)
the second approach using parameter pre-estimation.

We can see that the smallest nevus is invisible in the first colour map but discernible in the
second, proving that parameter pre-estimation indeed improves the detectability of sudden minor
changes in the tissue. The mean values of fm outside and inside the nevi in Fig. 16(a) were
1.60%± 0.29% and 2.69%± 0.60%, respectively. The respective mean values of fm outside and
inside the nevi in Fig. 16(b) were 2.14%± 0.06% and 4.90%± 0.14%. Comparing these values
demonstrates that parameter pre-estimation results in more accurate and robust estimations.
Specifically, the mean values in Fig. 16(b) agree more with the actual values of 2% and 5% than
those in Fig. 16(a)), and mean fm values in Fig. 16(b) are less scattered than those in Fig. 16(a)
– inside and outside the nevi. We also experimented with adding less noise to the spectra, but
the improvement in fm homogeneity was less pronounced, while the accuracy was higher in the
pre-estimated map, similar to the high noise case presented here.

All in all, results suggest that fitting hyperspectral images with multiple free parameters
could be improved by pre-estimating them. At first glance, parameter pre-estimation might
seem to prolong the time needed to fit hyperspectral images. However, we noticed an improved
convergence of the IAD algorithm, resulting in an overall much faster fitting process: the mean
number of iterations was reduced by 11, and the mean time per spectrum was lowered on average
by 0.08 s.

Furthermore, the values of estimated optical parameters for the second approach presented
in Table 7 agree between different fitting cases and the physiological values reported in the
literature. Specifically, the respective mean values of fm are all within the acceptable range of
0.1-15% stated by Verdel et al. [16], and the respective mean values of fHb and fHbO2 also fall
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within the permitted range of 0.1-20% reported in [16]. As a reference, the calculated mean
tissue oxygen saturation (StO2) values coincide with ranges reported by Fredriksson et al. [14]
and Bruins et al. [44]. The mean values of scattering coefficient, as, are generally also within
the range of 29.7-68.7 [4]. It can be seen from Table 7 that the IAD algorithm can successfully
differentiate between different phases of the arterial occlusion test based on the values of tissue
oxygenation. In both fitting cases, the initial tissue oxygenation dramatically decreases during
the arterial occlusion when blood flow is obstructed, followed by a significant increase after the
blood pressure cuff is deflated due to reflow of highly oxygenated blood in the examined area.

Table 7. Mean values and standard deviations of optical parameters estimated using case a or case
z (second approach) for all participants. The values in the table are presented for each phase of the

vascular occlusion test separately.

Case a Case z

Before During After Before During After

fm [%] 1.13± 0.43 0.78± 0.46 0.76± 0.21 1.09± 0.69 0.81± 0.38 1.24± 0.39

fHb [%] 1.79± 1.04 3.69± 0.98 1.84± 0.84 1.72± 0.74 4.26± 1.10 1.97± 1.06

fHbO2 [%] 2.05± 0.56 0.62± 0.58 3.60± 1.16 2.31± 1.06 1.17± 1.04 4.24± 0.90

StO2 [%] 53.35± 15.89 14.36± 12.02 66.12± 12.47 57.23± 15.43 21.57± 20.87 68.30± 12.59

as [1/cm] 72.20± 15.30 56.38± 18.75 59.93± 9.87 62.37± 15.22 61.35± 17.54 56.65± 15.47

Further analysis of cases a and z for both fitting approaches reveals that the cumulative RMSE
of fitted spectra in the second approach is higher in case z (3.49 · 10−3) than case a (1.06 · 10−3)
– a consequence of a worse agreement of fitted and measured spectra due to fewer degrees of
freedom of the model in case z than case a. We can see that the mean values and standard
deviations of estimated parameters presented in Table 7 are similar for both fitting cases, likely as
a result of parameter pre-estimation. Another possible explanation why lower standard deviations
of parameters in case z are not observed is because fixed parameters in case z are set to incorrect
values, forcing variable parameters to compensate their contribution to improve the agreement of
fitted and measured skin spectra.

This observation reveals the study’s primary limitation and raises an essential question on how
fixing model optical parameters to incorrect values affects the accuracy of the fitting process.
Although it was not considered in this study, a significant deterioration in fitting performance
is observed. Typically, optical parameters such as scattering coefficient, scattering power and
layer thicknesses are adopted from the literature. However, different studies report similar yet
discrepant values for various optical parameters. For example, the values of the scattering
coefficient of the entire skin reported by Jacques [4] ranged from 29.7 [1] to 60.1 [45] for the
whole skin when Rayleigh scattering is disregarded, a twofold increase in value. Therefore,
authors usually choose arbitrary values within the reported physiological values of skin optical
parameters, potentially leading to significant errors in free parameter estimation. A feasible yet
exhausting approach to studying this topic would be to systematically fit simulated skin spectra by
fixing various optical parameters to incorrect values and examining the effect on the estimation
of free parameters. However, careful attention must be paid to how incorrect values of model
parameters are selected. A possible option is to uniformly select the values of parameters within
the physiological values reported in the literature. Nevertheless, this could be troublesome due to
the scarcity of reported values for particular parameters such as cytochrome C oxidase.

We also recognise there was only one fitting case (case a) with all free parameters and one with
seven fixed parameters (case zz). We discussed that as the number of fixed parameters increases
from 4 to 7 in Fig. 7, the normalised cumulative RMSE and MAE values of fitted parameters
and spectra decrease. However, this is true for the average normalised cumulative RMSE and
MAE values calculated with respect to the number of fixed parameters, but for 0 and 7 fixed
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parameters, only one point was used to calculate the average. As a result, some discrepancies
occur for particular fitting cases; for example, fRMSE(w1, w2) in case z is lower than in case zz for
some combinations of w1 and w2 (see Fig. 5(a)), although fewer parameters are fixed.

A question might arise why not fix all possible combinations of parameters instead of the
presented 27 combinations. With the clinical utility of hyperspectral imaging to diagnose skin
diseases being our primary goal, there is a need to estimate parameters such as fm, fHb, fHbO2 and
fbrub and not fix them. Parameters fCO and fCOO2 were mainly introduced in the model to improve
the spectra fitting at the 600–700 nm slope. Because both are present in the tissue simultaneously,
it is sensible to either simultaneously consider them or disregard them both from the model.
Moreover, epidermal and dermal thicknesses, de and dd, were fixed in all fitting cases except
case a, where no parameters were fixed. Case a served as a reference to show the accuracy and
robustness of the unrestricted parameter estimation method. Fixing just dd does not affect the
spectra shapes significantly, as it is thick enough to be considered semi-infinite (dd = 1 cm). We
recognise that de, on the other hand, significantly affects the spectra and should be considered
individually in the research. However, a strong negative correlation between de and fm (–50 to
–60%) was found (Fig. S2), prohibiting robust estimation of both parameters simultaneously.
Therefore, when the parameter extraction was performed with both parameters free, the resulting
maps of de and fm were erratic. To increase the robustness, fixed de and free fm were selected.
Also, a recent study by Wang et al. [46] shows that fm multiplied by de was estimated more
accurately than fm itself.

In this particular study, no tissue-simulating phantoms with known optical properties such as
epidermal thickness were used to verify the results. There are two main reasons for that; firstly, we
are interested in extracting parameters from natural skin rather than tissue-mimicking phantoms;
secondly, producing tissue phantoms with anatomy and optical properties representative of
natural skin is exceptionally demanding. Thus, a compromise would have to be found between
the production difficulty and representativeness of the phantoms. A limited complexity of such
phantoms would require our tissue model to be simplified, eventually leading to unrepresentative
verification. However, we acknowledge that time and effort should be put to verify our results
on tissue-simulating phantoms in future work. Doing so would help us assess the real-world
accuracy (with experimental setup uncertainties introduced) of the IAD method by providing us
with invaluable reference values of optical properties. Nevertheless, our recent study extracted
the concentrations of absorbing silicon pigment and scattering microspheres from a set of simple
hemispherical tissue phantoms using a one-layer IAD method [47]. The extracted concentrations
agreed well with the actual concentrations used in phantom preparation (less than 10% relative
difference).

Our model could be disregarded as a simplified representation of natural human skin. Indeed,
human skin is a complex heterogeneous tissue consisting of (at least) three distinct layers [1].
The dermis, for example, comprises two structurally different layers, specifically papillary and
reticular dermis, with contrasting tissue and consequentially optical properties. Therefore,
another possible improvement of this study is the model expansion, namely adding the third and
perhaps fourth skin layer and other variable optical parameters (e.g., water, lipids). It would
undoubtedly increase the complexity of our current model by adding more parameters and thus
degrees of freedom, as seen in [3,6,14,23,24]. However, we believe that the agreement between
the model output and the experimental spectra will not improve significantly by adding additional
layers, as demonstrated by Bjorgan and Randeberg [24].

In his review, Jacques [4] demonstrated the effect of sequentially adding optical parameters
such as melanin, water and lipids to a generic tissue on the total absorption coefficient. He
showed that arbitrary skin spectra could be constructed from individual components by different
skin tissue models. A growing number of papers attempt to characterise biological tissue such as
human skin physiologically and structurally using tissue models with numerous model parameters
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[3,5–25,30,47,48]. Some model parameters (or sets of parameters) such as epidermal thickness
are fixed to reduce the complexity of the fitting problem and improve the speed and convergence
of the fitting algorithms. While multiple studies addressed the effect of using different tissue
models on the extraction of optical properties [3,16,24], no research systematically studied the
effect of fixing model parameters on the remaining variable model parameters. At best, Bjorgan
and Randeberg [24] evaluated the deviation of layer thickness, melanin content and scattering
coefficients when a single parameter was fitted in their IMC model, when all parameters were
fitted and when depth and melanin were fitted. Less extensively, Liu and Ramanujam [11]
studied the effect of epidermal thickness on the deviation of the total absorption and scattering
coefficients estimated by their IMC model.

Similarly, Sharma et al. [13] verified their two-layer IMC model by comparing estimated
top layer thickness, reduced scattering coefficient and absorption coefficient in the top and the
bottom layer with the actual values. However, the latter two studies did not explore the fixation
of particular optical parameters. Therefore, with this study, we remind the biomedical optics
community of the influence of the parameter’s values in tissue modelling, a problem that is too
often overlooked, and clarify the effect of fixation on the fitting results.

5. Conclusion

In this study, the performance of a two-layer GPU-accelerated IAD algorithm was examined
on noiseless simulated skin spectra, realistic simulated skin spectra with three different levels
of noise added, and in-vivo measured hyperspectral images of human hands recorded before,
during, and after arterial occlusion. The results on the simulated skin spectra suggest that
fixing a large number of model optical parameters – although highly subjective to the selection
of parameters – generally improves the performance of the IAD algorithm, making it more
accurate and robust. Adding noise to the simulated spectra negatively affects algorithms’
performance, yet the performance is satisfactory for the experimental noise level detected in
our integrated HSI system – the lower the noise, the better the fitting performance. Moreover,
the IAD method successfully demonstrated its potential in extracting optical properties of skin
from in-vivo measured hyperspectral images. Fixing multiple parameters generally improves
parameter estimation, but results suggest that fixing parameters to incorrect values deteriorates
the algorithm’s overall performance. However, pre-estimating parameters before actual fitting
could improve the convergence of the IAD algorithm and speed up the fitting process.

This research work provides a foundation for studying the effect of fixing optical parameters
on the performance of various iterative methods such as IMC and IAD. Therefore, it should be
considered in subsequent studies where diffuse reflectance spectra are analysed to extract optical
properties of the skin.
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